의료AI1 데이터 부족 상황에서의 소규모 학습 기술 – Few-shot, Zero-shot, One-shot 데이터 부족과 소규모 학습 기술의 중요성 및 등장 배경현대의 AI 기술은 방대한 양의 데이터를 통해 학습을 진행하며 성능을 높이는 방식으로 발전해왔다. 특히 딥러닝 모델은 대규모의 학습 데이터를 기반으로 우수한 성능을 보이지만, 실제로 산업이나 연구 환경에서는 충분한 양의 데이터를 확보하기 어려운 경우가 많다. 예컨대 희귀 질병의 의료 이미지 데이터나 특수한 산업 환경에서 얻어진 데이터는 수집이 어렵고 비용도 많이 든다. 이처럼 데이터가 부족한 환경에서는 일반적인 머신러닝 기법이 성능을 발휘하기 어렵다. 이를 해결하기 위해 최근 주목받는 것이 Few-shot learning(소량학습), One-shot learning(단일 예제 학습), Zero-shot learning과 같은 소규모 학습 기술이다. 기.. 2025. 4. 14. 이전 1 다음